Revenue Management for Small Hotels¹

Dirk D. Sierag ¹

¹Center for Mathematics and Computer Science (CWI), Amsterdam, dirk@cwi.nl

October 9, 2013

This work is in collaboration with prof.dr. G.M Koole, prof.dr. R.D. van der Mei, dr. J.I. van der Rest, and of dr. A.P. Zwart

Small Independent Hotels vs. Big Chain Hotels

- Less rooms (25-50)
- No (centralised) revenue management system
- Small management team (typically of size 1)

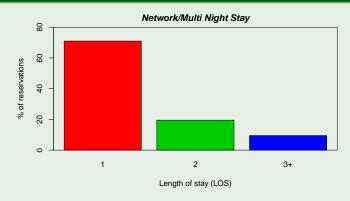
- Collaboration with 5 small independent hotels in the Netherlands
- Research motivated by real hotel data

Important Properties of Revenue Management System

- Group bookings
- Networks (multiple night stays)
- Cancellations

Example: Data from One Small Dutch Hotel

- The hotel has 34 hotel rooms with 5 room types
- Located in the countryside
- Attracts business as well as leisure clients
- Competition mainly consists of a big chain hotel



Observation

Large part (41%) of all bookings are group bookings


Networks/Multiple Night Stays

Observation

Big part (29%) stays more than one night

Cancellations

Observations

- 22% of all bookings are cancelled
- ullet Early booking \Longrightarrow high cancellation probability

Customer Choice Cancellation Model

Properties:

- Customer choice behaviour
- Cancellation
- Overbooking

Related work:

- Subramanian et alii (1999): Overbooking and cancellations
- Talluri and Van Ryzin (2004): Customer choice behaviour
- Ge and Pan (2010): Customer choice behaviour and overbooking

Example (Talluri & van Ryzin, 2004)

Hotel with

- C = 20 rooms
- n = 3 products with prices

$$r_1 = 800$$
 $r_2 = 500$ $r_3 = 450$

- T days before arrival
- $\lambda = 1/4$ probability that a customer arrives
- x_j number of reservations for product j ($x = (x_1, x_2, x_3)$)
- $\gamma(x_i) = x_i/100$ probability that product j is cancelled
- $L_i = r_i$ loss if product j is cancelled

Example (continued)

- P(S,j) probability that customer buys product j if $S \subset \{1,2,3\}$ is offered
- P(S,0) = 0 probability that customer buys nothing
- ullet E.g. $S=\{1,2\}$ and

$$P(S,1) = 0.1$$

$$P(S, 2) = 0.6$$

$$P(S,3) = 0$$

$$P(S,0) = 0.3$$

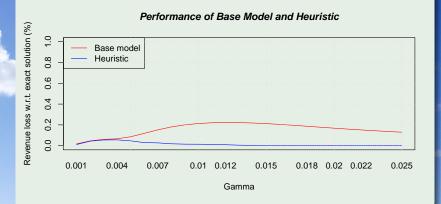
Objective

Which products $S \subset \{1,2,3\}$ do we offer t days before arrival in state x

Solution

Model as Markov decision process and solve with dynamic programming

Problems with exact model


- State space too large to solve $(x = (x_1, ..., x_n))$
- Action space too large $(|\mathcal{P}(\{1,\ldots,n\})|=2^n)$

Solution: heuristic

Outline algorithm:

- One-dimensional state space ($x \in \mathbb{N}$ number of reservations)
- Procedure:
 - **1** Fix strategy and approximate loss L_i
 - Solve one-dimensional problem to find next strategy
 - 3 Use strategy to approximate loss L_i and go to step 2
- Upside:
 - Smaller state space (one-dimensional)
 - 2 Smaller action space (most sets S can be ruled out)
- Downside: Not always convergent

Numerical Results

Observations

- Base model performs bad
- Heuristic performs well

Conclusions

- Cancellations have a big impact on revenue
- The heuristic approximates solution well

Further Research

- Bounds solution of heuristic
- Apply cancellation model to real data
- Group bookings and networks